题目内容
试判断函数f(x)=在下列区间上的奇偶性.
(1); (2).
试判断函数f(x)=cos(+x)(x∈R)的奇偶性.
设f(x)是定义在D上的函数,若对D中的任意两数x1,x2(x1≠x2),恒有,则称f(x)为定义在D上的C函数.
(1)试判断函数f(x)=x2是否为定义域上的C函数,并说明理由;
(2)若函数f(x)是R上的奇函数,试证明f(x)不是R上的C函数;
(3)设f(x)是定义在D上的函数,若对任何实数a∈(0,1)以及D中的任意两数x1,x2,恒有f(ax1+(1-a)x2]≤af(x1)+(1-a)f(x2),则称f(x)为定义在D上的C函数.已知f(x)是R上的C函数,m是给定的正整数,设an=f(n),n,0,1,2,…,m,且a0=0,am=2m,记Sf=a1+a2+…+am对于满足条件的任意函数f(x),试求Sf的最大值.
如下图所示,定义在D上的函数f(x),如果满足:对x∈D,常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图中的常数A可以是正数,也可以是负数或零)
(1)试判断函数f(x)=x3+在(0,+∞)上是否有下界?并说明理由;
(2)已知某质点的运动方程为S(t)=at-2,要使在t∈[0,+∞)上的每一时刻该质点的瞬时速度是以A=为下界的函数,求实数a的取值范围.
已知x>,函数f(x)=x2,h(x)=2elnx(e为自然常数).
(1)求证:f(x)≥h(x);
(2)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图像为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图像为边界”和“函数f(x),g(x)的图像有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.