题目内容

15.已知数列{an}的前n项和为Sn,满足a1=tanα,(0<α<$\frac{π}{2}$,α≠$\frac{π}{6}$),an+1=$\frac{{a}_{n}+\sqrt{3}}{1-\sqrt{3}{a}_{n}}$(n∈N*)关于下列命题:
①若α=$\frac{π}{3}$,则a3=0;
②对任意满足条件的角α,均有an+3=an(n∈N*
③存在α0∈(0,$\frac{π}{6}$)∪($\frac{π}{6}$,$\frac{π}{2}$),使得S3n=0
④当$\frac{π}{6}$<α<$\frac{π}{3}$时,S3n<0
其中正确的命题有(  )
A.1 个B.2 个C.3 个D.4 个

分析 ①由a1=$tan\frac{π}{3}$=$\sqrt{3}$,可得a2=$\frac{\sqrt{3}+\sqrt{3}}{1-\sqrt{3}×\sqrt{3}}$=-$\sqrt{3}$,a3=0,即可判断出正误;
②对任意的a1(a1≠),an+2=$\frac{{a}_{n+1}+\sqrt{3}}{1-\sqrt{3}{a}_{n+1}}$=$\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}$,an+3=$\frac{\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}+\sqrt{3}}{1-\sqrt{3}×\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}}$=an,即可判断出正误;
③由②的周期性可知:只要证明存在α0∈(0,$\frac{π}{6}$)∪($\frac{π}{6}$,$\frac{π}{2}$),使得S3=0即可.a2=$\frac{tanα+\sqrt{3}}{1-\sqrt{3}tanα}$,a3=$\frac{tanα-\sqrt{3}}{1+\sqrt{3}tanα}$.可得S3=a1+a2+a3=$\frac{3tanα(3-ta{n}^{2}α)}{1-3ta{n}^{2}α}$,取$α=\frac{π}{3}$,可得S3=0,即可判断出正误.
④当$\frac{π}{6}$<α<$\frac{π}{3}$时,$\frac{\sqrt{3}}{3}<tanα<\sqrt{3}$.由②的周期性可知:只要证明S3<0即可,S3=$\frac{3tanα(3-ta{n}^{2}α)}{1-3ta{n}^{2}α}$<0,即可判断出正误.

解答 解:①∵a1=$tan\frac{π}{3}$=$\sqrt{3}$,∴a2=$\frac{\sqrt{3}+\sqrt{3}}{1-\sqrt{3}×\sqrt{3}}$=-$\sqrt{3}$,∴a3=$\frac{-\sqrt{3}+\sqrt{3}}{1-\sqrt{3}×(-\sqrt{3})}$=0,因此正确;
②对任意的a1(a1≠),an+2=$\frac{{a}_{n+1}+\sqrt{3}}{1-\sqrt{3}{a}_{n+1}}$=$\frac{\frac{{a}_{n}+\sqrt{3}}{1-\sqrt{3}{a}_{n}}+\sqrt{3}}{1-\sqrt{3}×\frac{{a}_{n}+\sqrt{3}}{1-\sqrt{3}{a}_{n}}}$=$\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}$,an+3=$\frac{\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}+\sqrt{3}}{1-\sqrt{3}×\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}}$=an,∴an+3=an,正确;
③由②的周期性可知:只要证明存在α0∈(0,$\frac{π}{6}$)∪($\frac{π}{6}$,$\frac{π}{2}$),使得S3=0即可.a2=$\frac{tanα+\sqrt{3}}{1-\sqrt{3}tanα}$,a3=$\frac{tanα-\sqrt{3}}{1+\sqrt{3}tanα}$.S3=a1+a2+a3=tanα+$\frac{tanα+\sqrt{3}}{1-\sqrt{3}tanα}$+$\frac{tanα-\sqrt{3}}{1+\sqrt{3}tanα}$=$\frac{3tanα(3-ta{n}^{2}α)}{1-3ta{n}^{2}α}$,取$α=\frac{π}{3}$,可得S3=0,因此正确.
④当$\frac{π}{6}$<α<$\frac{π}{3}$时,$\frac{\sqrt{3}}{3}<tanα<\sqrt{3}$.由②的周期性可知:只要证明S3<0即可,a2=$\frac{tanα+\sqrt{3}}{1-\sqrt{3}tanα}$,a3=$\frac{tanα-\sqrt{3}}{1+\sqrt{3}tanα}$.S3=a1+a2+a3=$\frac{3tanα(3-ta{n}^{2}α)}{1-3ta{n}^{2}α}$<0,因此正确.
综上可得:①②③④都正确.
故选:D.

点评 本题考查了正切和差公式、数列递推关系、数列的周期性与单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网