题目内容
已知数列{an}的通项公式为an=2+
(n∈N*).
(1)求数列{an}的最大项;
(2)设bn=
,试确定实常数p,使得{bn}为等比数列;
(3)设m,n,p∈N*,m<n<p,问:数列{an}中是否存在三项am,an,ap,使数列am,an,ap是等差数列?如果存在,求出这三项;如果不存在,说明理由.
| 4 |
| 3n-1 |
(1)求数列{an}的最大项;
(2)设bn=
| an+p |
| an-2 |
(3)设m,n,p∈N*,m<n<p,问:数列{an}中是否存在三项am,an,ap,使数列am,an,ap是等差数列?如果存在,求出这三项;如果不存在,说明理由.
解(1)由题意an=2+
,随着n的增大而减小,所以{an}中的最大项为a1=4.
(2)bn=
=
=
,若{bn}为等比数列,
则b2n+1-bnbn+2=0(n∈N*)所以[(2+p)3n+1+(2-p)]2-[{2+p)3n+(2-p)][(2+p)3n+2+(2-p)]=0(n∈N*),
化简得(4-p2)(2•3n+1-3n+2-3n)=0即-(4-p2)•3n•4=0,解得p=±2.
反之,当p=2时,bn=3n,{bn}是等比数列;当p=-2时,bn=1,{bn}也是等比数列.
所以,当且仅当p=±2时{bn}为等比数列.
(3)因为am=2+
,an=2+
,ap=2+
,
若存在三项am,an,ap,使数列am,an,ap是等差数列,则2an=am+ap,
所以2(2+
)=2+
+2+
,
化简得3n(2×3p-n-3p-m-1)=1+3p-m-2×3n-m(*),
因为m,n,p∈N*,m<n<p,
所以p-m≥p-n+1,p-m≥n-m+1,
所以3p-m≥3p-n+1=3×3p-n,3p-m≥3n-m+1=3×3n-m,
(*)的左边≤3n(2×3p-n-3×3p-n-1)=3n(-3p-n-1)<0,
右边≥1+3×3n-m-2×3n-m=1+3n-m>0,所以(*)式不可能成立,
故数列{an}中不存在三项am,an,ap,使数列am,an,ap是等差数列.
| 4 |
| 3n-1 |
(2)bn=
2+
| ||
|
| (2+p)(3n-1)+4 |
| 4 |
| (2+p)3n+(2-p) |
| 4 |
则b2n+1-bnbn+2=0(n∈N*)所以[(2+p)3n+1+(2-p)]2-[{2+p)3n+(2-p)][(2+p)3n+2+(2-p)]=0(n∈N*),
化简得(4-p2)(2•3n+1-3n+2-3n)=0即-(4-p2)•3n•4=0,解得p=±2.
反之,当p=2时,bn=3n,{bn}是等比数列;当p=-2时,bn=1,{bn}也是等比数列.
所以,当且仅当p=±2时{bn}为等比数列.
(3)因为am=2+
| 4 |
| 3m-1 |
| 4 |
| 3n-1 |
| 4 |
| 3p-1 |
若存在三项am,an,ap,使数列am,an,ap是等差数列,则2an=am+ap,
所以2(2+
| 4 |
| 3n-1 |
| 4 |
| 3m-1 |
| 4 |
| 3p-1 |
化简得3n(2×3p-n-3p-m-1)=1+3p-m-2×3n-m(*),
因为m,n,p∈N*,m<n<p,
所以p-m≥p-n+1,p-m≥n-m+1,
所以3p-m≥3p-n+1=3×3p-n,3p-m≥3n-m+1=3×3n-m,
(*)的左边≤3n(2×3p-n-3×3p-n-1)=3n(-3p-n-1)<0,
右边≥1+3×3n-m-2×3n-m=1+3n-m>0,所以(*)式不可能成立,
故数列{an}中不存在三项am,an,ap,使数列am,an,ap是等差数列.
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|