题目内容
(2010•桂林二模)已知tan(α+
)=2,则tan(α+
)的值为
.
| π |
| 12 |
| π |
| 6 |
4-
| ||
2
|
4-
| ||
2
|
分析:利用二倍角公式解方程求得tan
=2-
,由tan(α+
)=tan[(α+
)+
]利用两角和的正切公式运算求得果.
| π |
| 12 |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
解答:解:tan
=
=
,∴tan
=2-
.
∴tan(α+
)=
=
,
故答案为
.
| π |
| 6 |
| ||
| 3 |
2tan
| ||
1-tan2
|
| π |
| 12 |
| 3 |
∴tan(α+
| π |
| 6 |
tan(α+
| ||||
1-tan(α+
|
4-
| ||
2
|
故答案为
4-
| ||
2
|
点评:本题考查两角和的正切公式,二倍角公式的应用,求出tan
=2-
,是解题的关键.
| π |
| 12 |
| 3 |
练习册系列答案
相关题目