题目内容
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数, 得到如下资料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差 | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数 | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取 2 组,用剩下的 4 组数据求 线性回归方程,再用被选取的 2 组数据进行检验;
(Ⅰ)求选取的 2 组数据恰好是相邻两个月的概率;
(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出
关于
的线性回归方程 ;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人, 则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
附:对于一组数据
,
,…,(
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
【答案】(1)![]()
(2)
.
(3)小组所得线性回归方程是理想的.
【解析】分析:从
组数据种选取
组数据共有
种情况,每种情况都是等可能出现的,其中抽到相邻两个月的数据的情况有
种,利用古典概型概率公式可得结果;(Ⅱ)由所给数据求得
,由公式求得
,再由
求得
,从而可得结果;(Ⅲ)利用所求回归方程,当
时,当
时,分别求出对应的
的值,即可判断所得线性回归方程是否理想.
详解:(Ⅰ)设抽到相邻两个月的数据为事件
,因为从6组数据种选取2组数据共有15种情况,每种情况都是等可能出现的,其中抽到相邻两个月的数据的情况有5种,所以![]()
(Ⅱ)由数据求得
由公式求得
,再由
求得![]()
所以
关于
的线性回归方程为![]()
(Ⅲ)当
时,![]()
同样,当
时,![]()
所以,该小组所得线性回归方程是理想的.
【题目】近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到了如表的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 5 | ||
女 | 10 | ||
合计 | 50 |
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
.
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为患心肺疾病与性别有关?说明你的理由.
参考格式:
,其中
.
下面的临界值仅供参考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |