题目内容
C
解析:f(x)=ex,f′(x)=ex,选C.
已知函数f(x)=2sin(ωx+),x∈R,其中ω>0,-π<≤π.若f(x)的最小正周期为6π,且当x=时,f(x)取得最大值,则( )
(A)f(x)在区间[-2π,0]上是增函数
(B)f(x)在区间[-3π,-π]上是增函数
(C)f(x)在区间[3π,5π]上是减函数
(D)f(x)在区间[4π,6π]上是减函数
(1)求函数f(x)的单调区间和最小值;
(2)当b>0时,求证:bb≥(其中e=2.718 28…是自然对数的底数);
(3)若a>0,b>0,证明f(a)+(a+b)ln2≥f(a+b)-f(b).
(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且m∥n,把其中x,y所满足的关系式记为y=f(x).若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.
(1)求和c的值.
(2)求函数f(x)的单调递减区间(用字母a表示).
(3)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A与B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),并求S(t)的最大值.