题目内容
已知函数f(x)=sin(x-
)+
cos(x-
),g(x)=
f(
-x),直线x=m与f(x)和g(x)的图象分别交于M、N两点,则|MN|的最大值______.
| π |
| 3 |
| 3 |
| π |
| 3 |
| 3 |
| π |
| 2 |
∵f(x)=sin(x-
)+
cos(x-
)=2[
sin(x-
)+
cos(x-
)]
=2sin(x-
+
)=2sinx
∴g(x)=
f(
-x)=2
sin(
-x)=2
cosx
又|MN|=|f(m)|+|g(m)|=|2sinm|+|2
cosm|=4(|
sinm|+|
cosm|)=4|sin(m+φ)|
∴|MN|的最大值为4
故答案为:4
| π |
| 3 |
| 3 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 3 |
| ||
| 2 |
| π |
| 3 |
=2sin(x-
| π |
| 3 |
| π |
| 3 |
∴g(x)=
| 3 |
| π |
| 2 |
| 3 |
| π |
| 2 |
| 3 |
又|MN|=|f(m)|+|g(m)|=|2sinm|+|2
| 3 |
| 1 |
| 2 |
| ||
| 2 |
∴|MN|的最大值为4
故答案为:4
练习册系列答案
相关题目