题目内容
设
、
是两个不共线的非零向量 (t∈R)
(1)记
=
,
=t
,
=
(
+
),那么当实数t为何值时,A、B、C三点共线?
(2)若|
|=|
|=1且
与
夹角为120°,那么实数x为何值时|
-x
|的值最小?
| a |
| b |
(1)记
| OA |
| a |
| OB |
| b |
| OC |
| 1 |
| 3 |
| a |
| b |
(2)若|
| a |
| b |
| a |
| b |
| a |
| b |
(1)由三点A,B,C共线,必存在一个常数t使得
=λ
,则有
-
=λ(
-
)
又
=
,
=t
,
=
(
+
)
∴t
-
=
λ(
+
)-λt
,又
、
是两个不共线的非零向量
∴
解得
故存在t=
时,A、B、C三点共线
(2)∵|
|=|
|=1且
,
两向量的夹角是120°
∴|
-x
|2=
2-2x
•
+x2
2=1+x+x2=(x+
)2+
∴当x=-
时,|
-x
|的值最小为
| AB |
| BC |
| OB |
| OA |
| OC |
| OB |
又
| OA |
| a |
| OB |
| b |
| OC |
| 1 |
| 3 |
| a |
| b |
∴t
| b |
| a |
| 1 |
| 3 |
| a |
| b |
| b |
| a |
| b |
∴
|
|
故存在t=
| 1 |
| 2 |
(2)∵|
| a |
| b |
| a |
| b |
∴|
| a |
| b |
| a |
| a |
| b |
| b |
| 1 |
| 2 |
| 3 |
| 4 |
∴当x=-
| 1 |
| 2 |
| a |
| b |
| ||
| 2 |
练习册系列答案
相关题目