题目内容
已知数列{an}的通项公式为an=n2-11n+2(n=1,2,…).试求:数列{an}中,奇数项组成的数列的通项公式和数列中的最小项及单调性.
解:设数列{an}的奇数项组成的数列为{bn}由题意得:
bn=a2n-1=(2n-1)2-11(2n-1)+2=4n2-26n+14.
an=n2-11n+2=(n-
)2-
.
∵n∈N,∴当n=5或n=6时,an最小=a5=a6=-28.
结合二次函数性质得
当n=1,2,3,4,5时,an单调递减,
当n=6,7,8,…时,an单调递增.
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|