题目内容
设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*).
(1)求数列{an}的通项公式;
(2)令 bn=
•
•an.用数学归纳法证明:(1-b1)(1-b2)…(1-bn)≥1-(b1+b2+…+bn);
(3)设cn=log
2,数列{cn}的前n项和为Cn,若存在整数m,使对任意n∈N*且n≥2,都有C3n-Cn>
成立,求m的最大值.
(1)求数列{an}的通项公式;
(2)令 bn=
| 1 |
| (n+1) |
| 1 |
| 8n |
(3)设cn=log
| an |
| n+1 |
| m |
| 20 |
分析:(1)根据题中给出的设数列{an}的前n项和为Sn便可求出数列{
}是公差为1的等差数列,将a1=4代入便可求出数列{an}的通项公式;
(2)由bn=
•
• (n+1)•2n=(
)n,知原不等式即证(1-
)(1-
)…(1-
)≥1-(
+
+…+
).由数学归纳法进行证明.
(3)先求出数列bn的通项公式,然后求写前n项和Bn的表达式,进而求出的B3n-Bn表达式,然后证明B3n-Bn为递增数列,即当n=2时,B3n-Bn最小,便可求出m的最大值.
| an |
| 2n |
(2)由bn=
| 1 |
| n+1 |
| 1 |
| 8n |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n |
(3)先求出数列bn的通项公式,然后求写前n项和Bn的表达式,进而求出的B3n-Bn表达式,然后证明B3n-Bn为递增数列,即当n=2时,B3n-Bn最小,便可求出m的最大值.
解答:解:(1)由Sn=2an-2n+1,得Sn-1=2an-1-2n(n≥2).
两式相减,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2).
于是
-
=1,所以数列{
}是公差为1的等差数列.
又S1=a1=2a1-22,所以a1=4.
所以
=2+(n-1)=n+1,故an=(n+1)•2n.
(2)由(1)知:bn=
•
• (n+1)•2n=(
)n,
原不等式即证(1-
)(1-
)…(1-
)≥1-(
+
+…+
).
①n=1时,左=1-
≥1-
=右,故n=1成立;
②假设n=k时,(1-
) (1-
)…(1-
) ≥1-(
+
+…+
),
则n=k+1时,(1-
)(1-
)…(1-
)(1-
)≥[1-(
+
+…+
)](1-
)
=1-(
+
+…+
+
)+(
+
+…+
)•
>1-(
+
+…+
+
).
故n=k+1时,也成立.综合①②知,原不等式恒成立.
(3)因为bn=log
2=log2n2=
,则B3n-Bn=
+
+
+…+
.
令f(n)=
+
+…+
,
则f(n+1)=
+
+…+
+
+
+
.
所以f(n+1)-f(n)=
+
+
-
=
+
-
>
+
-
=0.
即f(n+1)>f(n),所以数列{f(n)}为递增数列.(7分)
所以当n≥2时,f(n)的最小值为f(2)=
+
+
+
=
.
据题意,
<
,即m<19.又m为整数,
故m的最大值为18.(8分)
两式相减,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2).
于是
| an |
| 2n |
| an-1 |
| 2n-1 |
| an |
| 2n |
又S1=a1=2a1-22,所以a1=4.
所以
| an |
| 2n |
(2)由(1)知:bn=
| 1 |
| n+1 |
| 1 |
| 8n |
| 1 |
| 4 |
原不等式即证(1-
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n |
①n=1时,左=1-
| 1 |
| 4 |
| 1 |
| 4 |
②假设n=k时,(1-
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4k |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4k |
则n=k+1时,(1-
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4k |
| 1 |
| 4k+1 |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4k |
| 1 |
| 4k+1 |
=1-(
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4k |
| 1 |
| 4k+1 |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4k |
| 1 |
| 4k+1 |
>1-(
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4k |
| 1 |
| 4k+1 |
故n=k+1时,也成立.综合①②知,原不等式恒成立.
(3)因为bn=log
| an |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 3n |
令f(n)=
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 3n |
则f(n+1)=
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
| 1 |
| 3n+2 |
| 1 |
| 3n+3 |
所以f(n+1)-f(n)=
| 1 |
| 3n+1 |
| 1 |
| 3n+2 |
| 1 |
| 3n+3 |
| 1 |
| n+1 |
| 1 |
| 3n+1 |
| 1 |
| 3n+2 |
| 2 |
| 3n+3 |
| 1 |
| 3n+3 |
| 1 |
| 3n+3 |
| 2 |
| 3n+3 |
即f(n+1)>f(n),所以数列{f(n)}为递增数列.(7分)
所以当n≥2时,f(n)的最小值为f(2)=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 6 |
| 19 |
| 20 |
据题意,
| m |
| 20 |
| 19 |
| 20 |
故m的最大值为18.(8分)
点评:本题考查数列的综合应用,具体涉及到通项公式的求法、数学归纳法的证明和最大值的求法.解题时要认真审题,注意合理地进行等价转化.
练习册系列答案
相关题目