题目内容

(I)已知数列,其中,且数列为等比数列,求常数

(II)设是公比不相等的两个等比数列,,证明数列不是等比数列.

解:(Ⅰ)因为{cn+1pcn}是等比数列,故有

cn+1pcn2=( cn+2pcn+1)(cnpcn1),

cn=2n+3n代入上式,得

[2n1+3n1p(2n+3n)]2

=[2n2+3n2p(2n+1+3n+1)]?[2n+3np(2n1+3n1)],                

即[(2-p)2n+(3-p)3n]2

=[(2-p)2n+1+(3-p)3n+1][ (2-p)2n1+(3-p)3n1],

整理得(2-p)(3-p)?2n?3n=0,

解得p=2或p=3.                                               

(Ⅱ)设{an}、{bn}的公比分别为pqpqcn=an+bn

为证{cn}不是等比数列只需证c1?c3

事实上,=(a1pb1q)2=p2q2+2a1b1pq

c1?c3=(a1b1)(a1 p2b1q2)= p2q2a1b1p2q2

由于pqp2q2>2pq,又a1b1不为零,

因此c1?c3,故{cn}不是等比数列.                         

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网