题目内容
已知数列{an}的前n项和为Sn,且曲线y=x2-nx+1(n∈N*)在x=an处的切线的斜率恰好为Sn.
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和为Tn;
(3)求证:
+
+
+…
<
.
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和为Tn;
(3)求证:
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 5 |
| 3 |
(1)y’=2x-n,由导数的几何意义,得Sn=2an-n①,(1分)则Sn+1=2an+1-(n+1)②,
②一④得:an+l=2an+1-2an-1,即an+1=2an+l,(2分)故an+1=2(an+1).(3分)
由①知,al=S1=2a1-1,得a1=1.(4分)
∴{an+1}是首项为2,公比为2的等比数列,
∴an+l=2n,即an=2n-l(n∈N*).(5分)
(2)由(1)知,nan=n(2n-1)=n•2n-n,则Tn=(1•2+2•22+3•23++n•2n)-(1+2+3++n)=An-
,其中An=1•2+2•22+3•23++n•2n,①2An=1•22+2•23++(n-1)•2n+n•2n+1,②
①一②得:-An=2+22+23++2n-n•2n+1=
-n•2n+1=2n+1-2-n•2n+1
∴An=(n-1)2n+1+2(8分)故Tn=(n-1)2n+1+2-
(9分)
(3)∵
=
=
<
=2•
=2(
-
)(n≥2)(12分)∴
+
+
++
<1+2[(
-
)+(
-
)++(
-
)]=1+2(
-
)<1+2•
=
(l4分)
②一④得:an+l=2an+1-2an-1,即an+1=2an+l,(2分)故an+1=2(an+1).(3分)
由①知,al=S1=2a1-1,得a1=1.(4分)
∴{an+1}是首项为2,公比为2的等比数列,
∴an+l=2n,即an=2n-l(n∈N*).(5分)
(2)由(1)知,nan=n(2n-1)=n•2n-n,则Tn=(1•2+2•22+3•23++n•2n)-(1+2+3++n)=An-
| n(n+1) |
| 2 |
①一②得:-An=2+22+23++2n-n•2n+1=
| 2(1-2n) |
| 1-2 |
∴An=(n-1)2n+1+2(8分)故Tn=(n-1)2n+1+2-
| n(n+1) |
| 2 |
(3)∵
| 1 |
| an |
| 1 |
| 2n-1 |
| 2n+1-1 |
| (2n-1)(2n+1-1) |
| 2n+1 |
| (2n-1)(2n+1-1) |
| (2n+1-1)-(2n-1) |
| (2n-1)(2n+1-1) |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| 22-1 |
| 1 |
| 23-1 |
| 1 |
| 23-1 |
| 1 |
| 24-1 |
| 1. |
| 2n-1 |
| 1 |
| 2n+1-1 |
| 1 |
| 22-1 |
| 1 |
| 2n+1-1 |
| 1 |
| 3 |
| 5 |
| 3 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |