题目内容

已知数列{an}是等比数列,a1=2,a3=18;数列{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20,
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求数列{bn}的前n项和Sn
(Ⅲ)设Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8(n∈N*),比较Pn与Qn大小,并证明你的结论。
解:(Ⅰ)



(Ⅱ)
(Ⅲ)


当n=19时,Pn=Qn
当1≤n≤18时,Pn<Qn
当n≥20时,Pn>Qn
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网