题目内容
已知长轴在x轴上的椭圆的离心率e=
,且过点P(1,1).
(1)求椭圆的方程;
(2)若点A(x0,y0)为圆x2+y2=1上任一点,过点A作圆的切线交椭圆于B,C两点,求证:CO⊥OB(O为坐标原点).
| ||
| 3 |
(1)求椭圆的方程;
(2)若点A(x0,y0)为圆x2+y2=1上任一点,过点A作圆的切线交椭圆于B,C两点,求证:CO⊥OB(O为坐标原点).
(1)由题意,设椭圆方程为
+
=1(a>b>0)
∵e=
,∴
=
,∴a2=3b2
∵椭圆过点P(1,1),∴
+
=1
∴a2=4,b2=
∴椭圆的方程为
+
=1;
(2)证明:由题意可求得切线方程为x0x+y0y=1
①若y0=0,则切线为x=1(或x=-1),则B(1,1),C(1,-1),∴CO⊥OB(当x=-1时同理可得);
②当y0≠0时,切线方程为x0x+y0y=1,与椭圆联立并化简得(3x02+y02)x2-6x0x+3-4y02=0
∴x1+x2=
,x1x2=
设B(x1,y1),C(x2,y2),则x1x2+y1y2=(1+
)x1x2-
(x1+x2)+
=(1+
)×
-
×
+
=0
∴CO⊥OB
| x2 |
| a2 |
| y2 |
| b2 |
∵e=
| ||
| 3 |
| a2-b2 |
| a2 |
| 2 |
| 3 |
∵椭圆过点P(1,1),∴
| 1 |
| a2 |
| 1 |
| b2 |
∴a2=4,b2=
| 4 |
| 3 |
∴椭圆的方程为
| x2 |
| 4 |
| 3y2 |
| 4 |
(2)证明:由题意可求得切线方程为x0x+y0y=1
①若y0=0,则切线为x=1(或x=-1),则B(1,1),C(1,-1),∴CO⊥OB(当x=-1时同理可得);
②当y0≠0时,切线方程为x0x+y0y=1,与椭圆联立并化简得(3x02+y02)x2-6x0x+3-4y02=0
∴x1+x2=
| 6x0 |
| 3x02+y02 |
| 3-4y02 |
| 3x02+y02 |
设B(x1,y1),C(x2,y2),则x1x2+y1y2=(1+
| x02 |
| y02 |
| x0 |
| y02 |
| 1 |
| y02 |
=(1+
| x02 |
| y02 |
| 3-4y02 |
| 3x02+y02 |
| x0 |
| y02 |
| 6x0 |
| 3x02+y02 |
| 1 |
| y02 |
∴CO⊥OB
练习册系列答案
相关题目