题目内容
已知数列﹛an﹜满足:
+
+…+
=
(52n-1),n∈N*.
(Ⅰ)求数列﹛an﹜的通项公式;
( II)设bn=log5
,求
+
+…+
.
| 1 |
| a1 |
| 2 |
| a2 |
| n |
| an |
| 5 |
| 24 |
(Ⅰ)求数列﹛an﹜的通项公式;
( II)设bn=log5
| an |
| n |
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| bnbn+1 |
(Ⅰ)当n=1时,可得
=5,故a1=
当n≥2时,由
+
+…+
=
(52n-1)①可得
+
+…+
=
(52n-2-1)②
①-②得
=52n-1,所以an=
,经验证n=1时也符合,
所以数列﹛an﹜的通项公式为:an=
( II)bn=log5
=1-2n,所以bn+1=-1-2n,
所以
=
=
(
-
),
因此
+
+…+
=
(1-
+
-
+…+
-
)=
| 1 |
| a1 |
| 1 |
| 5 |
当n≥2时,由
| 1 |
| a1 |
| 2 |
| a2 |
| n |
| an |
| 5 |
| 24 |
| 1 |
| a1 |
| 2 |
| a2 |
| n-1 |
| an-1 |
| 5 |
| 24 |
①-②得
| n |
| an |
| n |
| 52n-1 |
所以数列﹛an﹜的通项公式为:an=
| n |
| 52n-1 |
( II)bn=log5
| 1 |
| 52n-1 |
所以
| 1 |
| bnbn+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
因此
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| bnbn+1 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
练习册系列答案
相关题目