题目内容
已知等差数列{an}的公差为d,且a2=3,a5=9,数列{bn}的前n项和为Sn,且Sn=1-
bn(n∈N*)
(1)求数列{an},{bn}的通项公式;
(2)记cn=
anbn 求证:数列{cn}的前n项和 Tn≤1.
| 1 |
| 2 |
(1)求数列{an},{bn}的通项公式;
(2)记cn=
| 1 |
| 2 |
(1)依题意,d=
=2,故a1=a2-d=1,
∴an=2n-1(n∈N*)…1分
在Sn=1-
bn中,令n=1,得b1=
,
当n≥2时,Sn=Sn=1-
bn,Sn-1=1-
bn-1,
两式相减得bn=
bn-1-
bn,
∴
=
(n≥2)…4分
∴bn=
•(
)n-1=
(n∈N*)…5分
(2)cn=
anbn=(2n-1)•(
)n…6分
Tn=1×(
)1+3×(
)2+5×(
)3+…+(2n-3)×(
)n-1+(2n-1)×(
)n,
Tn=1×(
)2+3×(
)3+…+(2n-3)×(
)n+(2n-1)×(
)n+1…7分,
两式相减得:
Tn=
+2[(
)2+(
)3+…+(
)n]-(2n-1)×(
)n+1
=
+2×
-(2n-1)×(
)n+1…9分,
∴Tn=1-(
)n×(n+1)…11分
∵n∈N*,
∴Tn≤1…12分
| a5-a2 |
| 5-2 |
∴an=2n-1(n∈N*)…1分
在Sn=1-
| 1 |
| 2 |
| 2 |
| 3 |
当n≥2时,Sn=Sn=1-
| 1 |
| 2 |
| 1 |
| 2 |
两式相减得bn=
| 1 |
| 2 |
| 1 |
| 2 |
∴
| bn |
| bn-1 |
| 1 |
| 3 |
∴bn=
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3n |
(2)cn=
| 1 |
| 2 |
| 1 |
| 3 |
Tn=1×(
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
两式相减得:
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=
| 1 |
| 3 |
| ||||
1-
|
| 1 |
| 3 |
∴Tn=1-(
| 1 |
| 3 |
∵n∈N*,
∴Tn≤1…12分
练习册系列答案
相关题目