题目内容
若圆x2+y2-ax+2y+1=0与圆x2+y2=1关于直线y=x-1对称,过点C(-a,a)的圆P与y轴相切,则圆心P的轨迹方程为( )
| A、y2-4x+4y+8=0 | B、y2-2x-2y+2=0 | C、y2+4x-4y+8=0 | D、y2-2x-y-1=0 |
分析:求出两个圆的圆心坐标,两个半径,利用两个圆关于直线的对称知识,求出a的值,然后求出过点C(-a,a)的圆P与y轴相切,就是圆心到C的距离等于圆心到y轴的距离,即可求出圆心P的轨迹方程.
解答:解:圆x2+y2-ax+2y+1=0的圆心(
,-1),因为圆x2+y2-ax+2y+1=0与圆x2+y2=1关于直线y=x-1对称,所以(
,-
)满足
直线y=x-1方程,解得a=2,过点C(-2,2)的圆P与y轴相切,圆心P的坐标为(x,y)
所以
=|x| 解得:y2+4x-4y+8=0
故选C
| a |
| 2 |
| a |
| 4 |
| 1 |
| 2 |
直线y=x-1方程,解得a=2,过点C(-2,2)的圆P与y轴相切,圆心P的坐标为(x,y)
所以
| (x+2)2+(y-2)2 |
故选C
点评:本题是中档题,考查圆关于直线对称的圆的方程,动圆圆心的轨迹方程问题,考查转化思想,按照轨迹方程求法步骤解答,是常考题.
练习册系列答案
相关题目