题目内容

f(m,n)中,m、n、f(m,n)均为非负整数,且对任意的mnf(0,n)=n+1,f(m+1,0)=f(m,1),f(m+1,n+1)=f(m,f(m+1,n)),

(1)求f(1,0)的值;

(2)求f(2,n)关于n的表达式;

(3)求f(3,n)关于n的表达式.

(1)∵f(0,n)=n+1,

n=1,则f(0,1)=2.

f(m+1,0)=f(m,1),令m=0,则f(1,0)=f(0,1)=2.

(2)∵f(m+1,n+1)=f(m,f(m+1,n)),

f(1,n)=f(0,f(1,n-1))=f(1,n-1)+1.

∴{f(1,n)}是以f(1,0)=2为首项,公差d=1的等差数列,

f(1,n)为第n+1项.

f(1,n)=n+2.

f(2,n)=f(1,f(2,n-1))=f(2,n-1)+2,

∴{f(2,n)}是以f(2,0)为首项,公差d=2的等差数列.

f(2,n)=f(2,0)+(n+1-1)d=2n+f(2,0).

又由f(m+1,0)=f(m,1)Equation.3 f(2,0)=f(1,1)=3,

f(2,n)=2n+3.

(3)∵f(3,n)=f(2,f(3,n-1))=2·f(3,n-1)+3,

f(3,n)+3=2(f(3,n-1)+3).

∴{f(3,n)}是以f(3,0)+3= f (2,1)+3=8为首项,公比为2的等比数列.

f (3,n)=8·2n-3=2n+3-3.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网