题目内容

已知函数f(x)=2x-2-x,数列{an}满足f(log2an)=-2n,
(1)求数列{an}的通项公式;
(2)证明数列{an}是递减数列。
(1)解:∵f(x)=,f(log2an)=-2n,

,解得
∵an>0,
,n∈N*;
(2)证明:
∵an>0,
∴an+1<an
∴数列{an}是递减数列。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网