题目内容
一条直线从点A(3,2)出发,经过x轴反射,通过点B(-1,6),求入射光线与反射光线所在的直线方程.
分析:求得点A关于x轴的对称点A'坐标为(3,-2),利用直线方程的两点式解出直线A'B的方程为2x+y-4=0,即得反射光线所在的直线方程.在反射线方程中令y=0求得入射点为C(2,0),再求出直线AC的方程为2x-y-4=0,即得入射光线所在的直线方程.
解答:解:∵点 A(3,2)关于x轴的对称点A'(3,-2)
∴由两点式可得直线A'B的方程为
=
化简得A'B的方程为2x+y-4=0,即反射光线所在的直线方程为2x+y-4=0
令y=0,得x=2,可得入射点坐标为C(2,0)
可得直线AC方程为:
=
,化简得2x-y-4=0
可得入射光线所在的直线方程为2x-y-4=0.
综上所述,可得入射光线所在的直线方程是2x-y-4=0,反射光线所在的直线方程2x+y-4=0.
∴由两点式可得直线A'B的方程为
| y+2 |
| 6+2 |
| x-3 |
| -1-3 |
化简得A'B的方程为2x+y-4=0,即反射光线所在的直线方程为2x+y-4=0
令y=0,得x=2,可得入射点坐标为C(2,0)
可得直线AC方程为:
| y-0 |
| 2-0 |
| x-2 |
| 3-2 |
可得入射光线所在的直线方程为2x-y-4=0.
综上所述,可得入射光线所在的直线方程是2x-y-4=0,反射光线所在的直线方程2x+y-4=0.
点评:本题给出光线反射问题,求入射光线与反射光线所在直线方程.着重考查了直线的基本量与基本形式、直线的对称位置关系等知识,属于中档题.
练习册系列答案
相关题目