题目内容
(2011•杭州一模)设两个非零向量
,
满足|
+
|=|
-
|=2|
|,则向量
+
与
-
的夹角是
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| a |
| b |
120°
120°
.分析:将|
+
|=|
-
|=2|
|各项平方转化,能得出
•
=0,|
|2=3|
|2,利用夹角余弦公式计算,注意等量代换.
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
| a |
解答:解:由已知得,
由①得
2+2
•
+b2=
2-2
•
+b2,
∴
•
=0,
将②展开
2+2
•
+b2=4
2,并代入整理得:|
|2=3|
|2,
∴(
+
)•(
-
)=
2-
2=-2
2,
cosθ=
=
=-
所求夹角是
,
故答案为120°
|
由①得
| a |
| a |
| b |
| a |
| a |
| b |
∴
| a |
| b |
将②展开
| a |
| a |
| b |
| a |
| b |
| a |
∴(
| a |
| b |
| a |
| b |
| a |
| b |
| a |
cosθ=
(
| ||||||||
|
|
-2
| ||||
4|
|
| 1 |
| 2 |
所求夹角是
| 2π |
| 3 |
故答案为120°
点评:本题考查向量的数量积、模、夹角的运算,本题的关键是将已知转化,得出
,
的两条关系,在解题过程中进行等量代换.属于中档题.
| a |
| b |
练习册系列答案
相关题目