题目内容
(2013•湖州二模)已知数列{an}满足a1=1,(2n+5)an+1-(2n+7)an=4n2+24n+35(n∈N*),则数列{an}的通项公式为
an=
| (2n+5)(7n-6) |
| 7 |
an=
.| (2n+5)(7n-6) |
| 7 |
分析:根据数列递推式,变形可得数列{
}是以
=
为首项,以1为公差的等差数列,由此可得结论.
| an |
| 2n+5 |
| a1 |
| 7 |
| 1 |
| 7 |
解答:解:由题意(2n+5)an+1-(2n+7)an=4n2+24n+35,
可以得到(2n+5)an+1-(2n+7)an=(2n+5)(2n+7),
即
-
=1,
所以数列{
}是以
=
为首项,以1为公差的等差数列.
则有
=
+(n-1)×1,
所以an=
.
故答案为:an=
.
可以得到(2n+5)an+1-(2n+7)an=(2n+5)(2n+7),
即
| an+1 |
| 2(n+1)+5 |
| an |
| 2n+5 |
所以数列{
| an |
| 2n+5 |
| a1 |
| 7 |
| 1 |
| 7 |
则有
| an |
| 2n+5 |
| 1 |
| 7 |
所以an=
| (2n+5)(7n-6) |
| 7 |
故答案为:an=
| (2n+5)(7n-6) |
| 7 |
点评:本题考查数列递推式,考查等差数列的判定,考查学生的计算能力,属于基础题.
练习册系列答案
相关题目