题目内容
设数列{an}的前n项和为Sn,且Sn=n2,则an=________.
2n-1
分析:根据数列{an}的前n项和Sn,表示出数列{an}的前n-1项和Sn-1,两式相减即可求出此数列的通项公式,然后把n=1代入也满足,故此数列为等差数列,求出的an即为通项公式.
解答:当n=1时,S1=12=1,
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
又n=1时,a1=2-1=1,满足通项公式,
∴此数列为等差数列,其通项公式为an=2n-1,
故答案为:2n-1.
点评:此题考查了等差数列的通项公式,灵活运用an=Sn-Sn-1求出数列的通项公式.属于基础题.
分析:根据数列{an}的前n项和Sn,表示出数列{an}的前n-1项和Sn-1,两式相减即可求出此数列的通项公式,然后把n=1代入也满足,故此数列为等差数列,求出的an即为通项公式.
解答:当n=1时,S1=12=1,
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
又n=1时,a1=2-1=1,满足通项公式,
∴此数列为等差数列,其通项公式为an=2n-1,
故答案为:2n-1.
点评:此题考查了等差数列的通项公式,灵活运用an=Sn-Sn-1求出数列的通项公式.属于基础题.
练习册系列答案
相关题目