题目内容
【题目】设
,
,令
,
,
.
(1)写出
,
,
的值,并猜想数列
的通项公式;
(2)用数学归纳法证明你的结论.
【答案】(1)a1=1,a2=
,a3=
;a4=
,猜想an=
(n∈N+);(2)证明见解析.
【解析】试题分析:
(1)由题意结合函数的解析式计算可得a2=f(a1)=
,a3=f(a2)=
;a4=f(a3)=
,猜想an=
(n∈N+);
(2)首先证明n=1时,猜想正确. 然后假设n=k时猜想正确,即ak=
,证明n=k+1时猜想正确即可证得题中的结论.
试题解析:
(1)∵a1=1,
∴a2=f(a1)=f(1)=
,
a3=f(a2)=
;a4=f(a3)=
,
猜想an=
(n∈N+);
(2)证明:①易知,n=1时,猜想正确.
②假设n=k时猜想正确,即ak=
,
则ak+1=f(ak)=
=
.
这说明n=k+1时猜想正确.
由①②知,对于任何n∈N+,都有an=
.
练习册系列答案
相关题目