题目内容

已知函数f(x)=(x2+1)e2x,若0°<2α<90°,90°<β<180°a=(sinα)cosβ,b=(cosα)sinβ,c=(cosα)cosβ,则f(a),f(b),f(c)的大小关系是(  )
分析:先判断函数f(x)的单调性,根据α,β的范围可判断cosα,cosβ,sinα,sinβ的大小关系及符号,根据指数函数及幂函数单调性即可比较大小.
解答:解:f′(x)=2x•e2x+(x2+1)•2e2x=2e2x(x+x2+1),
因为x2+x+1=(x+
1
2
)2+
3
4
>0,
所以f′(x)>0,所以f(x)在R上单调递增.
由0°<2α<90°得0°<α<45°,所以0<cosα<1,
又90°<β<180°,所以sinβ>0>cosβ,所以(cosα)sinβ<(cosα)cosβ,即b<c;
由cosβ<0及sinα<cosα,得(sinα)cosβ>(cosα)cosβ,即a>c,
综上,a>c>b,又f(x)单调递增,所以f(a)>f(c)>f(b),
故选C.
点评:本题考查利用导数研究函数的单调性,考查指数函数、幂函数单调性的应用,考查三角函数值的大小比较,考查学生综合运用知识解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网