题目内容
5、设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则( )
分析:对题设中的条件进行变化,利用函数的性质得到不等式关系,再由不等式的运算性质整理变形成结果,与四个选项比对即可得出正确选项.
解答:解:∵x1+x2>0,x2+x3>0,x3+x1>0,
∴x1>-x2,x2>-x3,x3>-x1,
又f(x)是定义在R上单调递减的奇函数,
∴f(x1)<f(-x2)=-f(x2),f(x2)<f(-x3)=-f(x3),f(x3)<f(-x1)=-f(x1),
∴f(x1)+f(x2)<0,f(x2)+f(x3)<0,f(x3)+f(x1)<0,
∴f(x1)+f(x2)+f(x3)<0
故选B
∴x1>-x2,x2>-x3,x3>-x1,
又f(x)是定义在R上单调递减的奇函数,
∴f(x1)<f(-x2)=-f(x2),f(x2)<f(-x3)=-f(x3),f(x3)<f(-x1)=-f(x1),
∴f(x1)+f(x2)<0,f(x2)+f(x3)<0,f(x3)+f(x1)<0,
∴f(x1)+f(x2)+f(x3)<0
故选B
点评:本题考查奇偶性与单调性的综合,解题的关键是根据函数的性质得到f(x1)+f(x2)<0,f(x2)+f(x3)<0,f(x3)+f(x1)<0,再由不等式的性质即可得到结论.
练习册系列答案
相关题目
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2+a(a是常数).则x∈[2,4]时的解析式为( )
| A、f(x)=-x2+6x-8 | B、f(x)=x2-10x+24 | C、f(x)=x2-6x+8 | D、f(x)=x2-6x+8+a |