题目内容
已知数列{an}为等差数列,{an}的前n项和为Sn,a1+a3=
,S5=5
(1)求数列{an}的通项公式;
(2)若数列{bn}满足anbn=
,Tn=b1b2+b2b3+b3b4+…+bnbn+1,求Tn.
| 3 |
| 2 |
(1)求数列{an}的通项公式;
(2)若数列{bn}满足anbn=
| 1 |
| 4 |
(1)由a1+a3=
,S5=5,得
解得a1=
,d=
.
∴an=
.
(2)∵an=
,∴bn=
,
∴bnbn+1=
=
-
,
∴Tn=b1b2+b2b3+b3b4+…+bnbn+1=(
-
)+(
-
)+…+(
-
)=
-
=
.
| 3 |
| 2 |
|
解得a1=
| 1 |
| 2 |
| 1 |
| 4 |
∴an=
| n+1 |
| 4 |
(2)∵an=
| n+1 |
| 4 |
| 1 |
| n+1 |
∴bnbn+1=
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Tn=b1b2+b2b3+b3b4+…+bnbn+1=(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| n |
| 2(n+2) |
练习册系列答案
相关题目
定义:在数列{an}中,an>0且an≠1,若
为定值,则称数列{an}为“等幂数列”.已知数列{an}为“等幂数列”,且a1=2,a2=4,Sn为数列{an}的前n项和,则S2009=( )
| a | an+1 n |
| A、6026 | B、6024 |
| C、2 | D、4 |