题目内容
(1)若log23=a,3b=7求用a、b表示log4256(2)logac,logbc是方程x2-3x+1=0的两根,求log
| a | b |
分析:(1)由题意知log37=b,log23•log37=log27=ab.由此可知log4256的值.
(2)由题意知logac•logbc=1,logca+logcb=
=3,log
c=
=
,代入可得答案.
(2)由题意知logac•logbc=1,logca+logcb=
| logac+logbc |
| logac•logab |
| a |
| b |
| 1 |
| logca-logcb |
| 1 | ||
|
解答:解:(1)∵3b=7,∴log37=b,
∴log23•log37=log27=ab.
∴log4256=
=
=
.
(2)logac+logbc=3,logac•logbc=1,
∴logca+logcb=
=3,
∴log
c=
=
=
=
.
∴log23•log37=log27=ab.
∴log4256=
| log256 |
| log242 |
| log27+3log22 |
| log22+log23+log27 |
=
| ab+3 |
| 1+a+ab |
(2)logac+logbc=3,logac•logbc=1,
∴logca+logcb=
| logac+logbc |
| logac•logab |
∴log
| a |
| b |
| 1 |
| logca-logcb |
| 1 | ||
|
=
| 1 | ||
|
| ||
| 5 |
点评:本题考查对数的性质和运算法则,解题时要认真审题,仔细解答.
练习册系列答案
相关题目