题目内容

设正方体的棱长为
2
3
3
,则它的外接球的表面积为(  )
A、
8
3
π
B、2π
C、4π
D、
4
3
π
分析:本题考查一个常识,即:由正方体的体对角线的长就是外接球的直径的大小,因此可得到外接球的直径,进而求得R,再代入球的表面积公式可得球的表面积.
解答:解:设正方体的棱长为a,正方体外接球的半径为R,则由正方体的体对角线的长就是外接球的直径的大小可知:2R=
3
a
,即R=
3
a
2
=
3
2
2
3
3
=1;
所以外接球的表面积为:S=4πR2=4π.
故选C
点评:本题考查正方体与球的知识,正方体的外接球的概念以及正方体棱长与其外接球的直径之间的数量关系,球的表面积的计算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网