ÌâÄ¿ÄÚÈÝ
12£®£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÍÖÔ²C1µÄ϶¥µãΪE£¬¹ý×ø±êÔµãOÇÒÓë×ø±êÖá²»ÖØºÏµÄÈÎÒâÖ±Ïßt£¾1£¬ÓëÔ²C2ÏཻÓÚµãA¡¢B£¬Ö±ÏßEA¡¢EBÓëÍÖÔ²C1µÄÁíÒ»¸ö½»µã·Ö±ðÊǵãP¡¢M£®ÉèPMµÄбÂÊΪk1£¬Ö±ÏßlбÂÊΪk2£¬Çó$\frac{k_2}{k_1}$µÄÖµ£®
·ÖÎö £¨1£©½«µã´úÈëÍÖÔ²·½³Ì£¬½â·½³Ì×飬ÇóµÃa2=2£¬b2=1£¬¿ÉµÃÍÖÔ²C1µÄ·½³Ì£»
£¨2£©Éè³öPEËùÔÚÖ±Ïß·½³Ì£¬ºÍÍÖÔ²·½³ÌÁªÁ¢ÇóµÃP¡¢MµÄ×ø±ê£¬Ôòk1¿ÉÇó£¬ÁªÁ¢Ö±ÏßPEµÄ·½³ÌÓëÔ²µÄ·½³ÌÇóµÃM×ø±ê£¬ÔòÖ±ÏßlбÂÊΪk2Çó£¬×÷±È¿ÉµÃ$\frac{k_2}{k_1}$µÄÖµ£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²C1¹ýµã£¨1£¬$\frac{\sqrt{2}}{2}$£©£¬½¹¾àΪ2£¬
¡à$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}+\frac{\frac{1}{2}}{{b}^{2}}=1}\\{{a}^{2}-{b}^{2}=1}\end{array}\right.$½â·½³Ì×飬ÇóµÃa2=2£¬b2=1£¬
¡àÍÖÔ²C1µÄ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£®¡£¨4·Ö£©
£¨2£©ÓÉÌâÒâÖªÖ±ÏßPE£¬MEµÄбÂÊ´æÔÚÇÒ²»Îª0£¬PE¡ÍEM£¬
²»·ÁÉèÖ±ÏßPEµÄбÂÊΪk£¨k£¾0£©£¬ÔòPE£ºy=kx-1£¬
ÓÉ$\left\{\begin{array}{l}y=kx-1\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.$µÃ$\left\{\begin{array}{l}x=\frac{4k}{{2{k^2}+1}}\\ y=\frac{{2{k^2}-1}}{{2{k^2}+1}}\end{array}\right.$»ò$\left\{\begin{array}{l}x=0\\ y=-1\end{array}\right.$£¬¡à$P£¨\frac{4k}{{2{k^2}+1}}£¬\frac{{2{k^2}-1}}{{2{k^2}+1}}£©$£®¡£¨6·Ö£©
ÓÃ$-\frac{1}{k}$È¥´úk£¬µÃ$M£¨\frac{-4k}{{2+{k^2}}}£¬\frac{{2-{k^2}}}{{2+{k^2}}}£©$£¬¡£¨8·Ö£©
Ôò${k_1}={k_{PM}}=\frac{{{k^2}-1}}{3k}$¡£¨10·Ö£©
ÓÉ$\left\{\begin{array}{l}y=kx-1\\{x^2}+{y^2}=1\end{array}\right.$µÃ$\left\{\begin{array}{l}x=\frac{2k}{{{k^2}+1}}\\ y=\frac{{{k^2}-1}}{{{k^2}+1}}\end{array}\right.$»ò$\left\{\begin{array}{l}x=0\\ y=-1\end{array}\right.$¡à$A£¨\frac{2k}{{{k^2}+1}}£¬\frac{{{k^2}-1}}{{{k^2}+1}}£©$£®¡£¨12·Ö£©
Ôò${k_2}={k_{OA}}=\frac{{{k^2}-1}}{2k}$£¬ËùÒÔ$\frac{k_2}{k_1}=\frac{3}{2}$£®¡£¨14·Ö£©
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏߺÍÔ²×¶ÇúÏßµÄλÖùØÏµ£¬¿¼²éÁË·½³Ì×éµÄ½â·¨£¬ÑµÁ·ÁËÀûÓûù±¾²»µÈʽÇó×îÖµ£¬¿¼²éÁËѧÉúµÄÔËËãÄÜÁ¦£¬Êô¸ß¿¼ÊÔÌâÖеÄѹÖáÌ⣮
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
| A£® | $\frac{1}{2}$ | B£® | $1-\frac{{\sqrt{2}}}{2}$ | C£® | $\frac{{\sqrt{2}}}{2}$ | D£® | $\sqrt{2}$ |
| A£® | [$\frac{1}{2}$£¬$\frac{5}{4}$] | B£® | [$\frac{1}{2}$£¬$\frac{3}{4}$] | C£® | £¨0£¬$\frac{1}{2}$] | D£® | £¨0£¬2] |
| A£® | 1113 | B£® | 1110 | C£® | 1107 | D£® | 999 |
| A£® | £¨5£¬10£© | B£® | £¨6£¬6£© | C£® | £¨10£¬5£© | D£® | £¨7£¬2£© |