题目内容
已知函数f(x)=sin(x-
)+sin2x+
,x∈R
(1)求f(
)的值;
(2)当x取什么值时,函数f(x)有最大值,是多少?
| π |
| 2 |
| 3 |
| 4 |
(1)求f(
| 8π |
| 3 |
(2)当x取什么值时,函数f(x)有最大值,是多少?
分析:(1)依题意知,f(x)=-cos2x-cosx+
,于是可求得f(
)的值;
(2)化简得f(x)=-cos2x-cosx+
=-(cosx+
)2+2,于是可知当cosx=-
,函数f(x)有最大值2.
| 7 |
| 4 |
| 8π |
| 3 |
(2)化简得f(x)=-cos2x-cosx+
| 7 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:(1)∵f(x)=sin(x-
)+sin2x+
=-cosx+1-cos2x+
=-cos2x-cosx+
,
∴f(
)=-cos2
-cos
+
=-cos2
-cos
+
=-
+
+
=2;
(2)∵f(x)=-cos2x-cosx+
=-(cosx+
)2+2,
∴当cosx=-
,
即x=±
+2kπ,k∈Z时,f(x)有最大值为2.
| π |
| 2 |
| 3 |
| 4 |
=-cosx+1-cos2x+
| 3 |
| 4 |
=-cos2x-cosx+
| 7 |
| 4 |
∴f(
| 8π |
| 3 |
| 8π |
| 3 |
| 8π |
| 3 |
| 7 |
| 4 |
=-cos2
| 2π |
| 3 |
| 2π |
| 3 |
| 7 |
| 4 |
=-
| 1 |
| 4 |
| 1 |
| 2 |
| 7 |
| 4 |
=2;
(2)∵f(x)=-cos2x-cosx+
| 7 |
| 4 |
| 1 |
| 2 |
∴当cosx=-
| 1 |
| 2 |
即x=±
| 2π |
| 3 |
点评:本题考查二倍角的正弦与诱导公式,考查余弦函数的单调性与最值,突出配方法的考查,属于中档题.
练习册系列答案
相关题目