题目内容

(08年银川一中一模理)  (12分)已知函数

   (1)若函数f(x)在上的增函数,求正实数a的取值范围;

   (2)a=1时,求f(x)在[,2]上最大值和最小值;

   (3)a=1时,求证:对大于1的正整数n,.

解析:(1)由已知:   

依题意得:≥0对x∈成立

∴ax-1≥0,对x∈恒成立,即a≥,对x∈恒成立,

∴a≥(max,即a≥1.

(2)当a=1时,,x∈[,2],若x∈,则

若x∈,则,故x=1是函数f(x)在区间[,2]上唯一的极小值点,也就是最小值点,故f(x)min=f(1)=0.

又f()=1-ln2,f(2)=- +ln2,f()-f(2)=-2ln2=

∵e3>2.73=19.683>16,

∴f()-f(2)>0   

∴f()>f(2)  

∴f(x)在[,2]上最大值是f(

∴f(x)在[,2]最大1-ln2,最小0

(3)当a=1时,由(1)知,f(x)=+lnx在

当n>1时,令x=,则x>1     ∴f(x)>f(1)=0

即ln>

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网