题目内容
已知函数f(x)=2sinxcosx+sin(2x+| π |
| 2 |
(1)若x∈R,求f(x)的最小正周期和单调递增区间;
(2)设x∈[0,
| π |
| 3 |
分析:(1)利用两角和的正弦函数把函数化简为f(x)=
sin(2x+
),直接求出函数f(x)的最小正周期及单调区间;
(2)由 x∈[0,
],求出2x+
的范围,进而求出正弦函数值的范围,再由解析式求出函数值域.
| 2 |
| π |
| 4 |
(2)由 x∈[0,
| π |
| 3 |
| π |
| 4 |
解答:解:(1)f(x)=sin2x+cos2x=
sin(2x+
)
周期T=
=π;
令2kπ-
≤2x+
≤
+2kπ,得kπ-
≤x≤kπ+
所以,单调递增区间为[kπ-
,kπ+
],k∈Z
(2)若0≤x≤
,则
≤2x+
≤
,sin
=sin
=sin(
-
)=
<sin
∴
≤sin(2x+
)≤1,
≤
sin(2x+
)≤
即f(x)的值域为[
,
]
| 2 |
| π |
| 4 |
周期T=
| 2π |
| 2 |
令2kπ-
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 8 |
| π |
| 8 |
所以,单调递增区间为[kπ-
| 3π |
| 8 |
| π |
| 8 |
(2)若0≤x≤
| π |
| 3 |
| π |
| 4 |
| π |
| 4 |
| 11π |
| 12 |
| 11π |
| 12 |
| π |
| 12 |
| π |
| 4 |
| π |
| 6 |
| ||||
| 4 |
| π |
| 4 |
| ||||
| 4 |
| π |
| 4 |
| ||
| 2 |
| 2 |
| π |
| 4 |
| 2 |
即f(x)的值域为[
| ||
| 2 |
| 2 |
点评:本题的考点是正弦函数的单调性和求定区间上的值域,需要对解析式进行适当的化简成正弦型的函数,再利用整体思想求解.
练习册系列答案
相关题目