题目内容

以F1(-1,0),F2(1,0)为焦点且经过点P(1,
32
)的椭圆的方程为
 
分析:首先设出椭圆的标准方程
x2
a2
+
y2
b2
=1
,然后根据题意,求出a、b满足的2个关系式,解方程即可.
解答:解:设椭圆E的方程为
x2
a2
+
y2
b2
=1
(a>b>0).
∵c=1,
∴a2-b2=1①,
∵点(1,
3
2
)在椭圆E上,
1
a2
+
9
4b2
=1
②,
由①、②得:a2=4,b2=3,
∴椭圆E的方程为:
x2
4
+
y2
3
=1
点评:本题应用了求椭圆标准方程的常规做法:待定系数法,熟练掌握椭圆的几何性质是解题的关键,同时考查了学生的基本运算能力与运算技巧.属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网