题目内容
已知等比数列{an}的前n项和为Sn,且满足Sn=3n+k.
(1)求k的值及数列{an}的通项公式;
(2)若数列{bn}满足
=(4+k)anbn,求数列{bn}的前n项和Tn.
(1)求k的值及数列{an}的通项公式;
(2)若数列{bn}满足
| an+1 |
| 2 |
解(1)当n≥2时由an=Sn-Sn-1=3n+k-3n-1-k=2•3n-1…(2分)
∵a1=S1=3+k,
∴k=-1,…(4分)
(2)由
=(4+k)anbn,可得bn=
,
bn=
•
,…(6分)
∴Tn=
(
+
+
+…+
)…(7分)
Tn=
(
+
+
+…+
)…(9分)
两式相减可得,
Tn=
(
+
+
+…+
-
)
=
×[
-
]
=
×[
-
]…(10分)
∴Tn=
(
-
-
)…(12分)
∵a1=S1=3+k,
∴k=-1,…(4分)
(2)由
| an+1 |
| 2 |
| n |
| 2•3n-1 |
bn=
| 3 |
| 2 |
| n |
| 3n |
∴Tn=
| 3 |
| 2 |
| 1 |
| 3 |
| 2 |
| 32 |
| 3 |
| 33 |
| n |
| 3n |
| 1 |
| 3 |
| 3 |
| 2 |
| 1 |
| 32 |
| 2 |
| 33 |
| 3 |
| 34 |
| n |
| 3n+1 |
两式相减可得,
| 2 |
| 3 |
| 3 |
| 2 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| n |
| 3n+1 |
=
| 3 |
| 2 |
| ||||
1-
|
| n |
| 3n+1 |
=
| 3 |
| 2 |
1-
| ||
| 2 |
| n |
| 3n+1 |
∴Tn=
| 9 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2•3n |
| n |
| 3n+1 |
练习册系列答案
相关题目