题目内容

已知等比数列{an}的前n项和为Sn,且满足Sn=3n+k.
(1)求k的值及数列{an}的通项公式;
(2)若数列{bn}满足
an+1
2
=(4+k)anbn,求数列{bn}的前n项和Tn
解(1)当n≥2时由an=Sn-Sn-1=3n+k-3n-1-k=2•3n-1…(2分)
∵a1=S1=3+k,
∴k=-1,…(4分)
(2)由
an+1
2
=(4+k)anbn
,可得bn=
n
2•3n-1

bn=
3
2
n
3n
,…(6分)
Tn=
3
2
(
1
3
+
2
32
+
3
33
+…+
n
3n
)
…(7分)
1
3
Tn=
3
2
(
1
32
+
2
33
+
3
34
+…+
n
3n+1
)
…(9分)
两式相减可得,
2
3
Tn=
3
2
1
3
+
1
32
+
1
33
+…+
1
3n
-
n
3n+1

=
3
2
×[
1
3
(1-
1
3n
)
1-
1
3
-
n
3n+1
]

=
3
2
×[
1-
1
3n
2
-
n
3n+1
]
…(10分)
               
Tn=
9
4
(
1
2
-
1
2•3n
-
n
3n+1
)
…(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网