题目内容
已知f(x)=x2-x+c定义在区间[0,1]上,x1、x2∈[0,1],且x1≠x2,求证:(1)f(0)=f(1);
(2)|f(x2)-f(x1)|<|x1-x2|;
(3)|f(x1)-f(x2)|<
;
(4)|f(x1)-f(x2)|≤
.
证明:(1)f(0)=c,f(1)=c,
∴f(0)=f(1).
(2)|f(x2)-f(x1)|=|x2-x1||x2+x1-1|.
∵0≤x1≤1,∴0≤x2≤1,0<x1+x2<2(x1≠x2).
∴-1<x1+x2-1<1.
∴|f(x2)-f(x1)|<|x2-x1|.
(3)不妨设x2>x1,由(2)知|f(x2)-f(x1)|<x2-x1.①
而由f(0)=f(1),从而|f(x2)-f(x1)|=|f(x2)-f(1)+f(0)-f(x1)|≤|f(x2)-f(1)|+|f(0)-f(x1)|<|1-x2|+|x1|<1-x2+x1.②
①+②得2|f(x2)-f(x1)|<1,
即|f(x2)-f(x1)|<
.
(4)|f(x2)-f(x1)|≤fmax-fmin=f(0)-f(
)=
.
练习册系列答案
相关题目