题目内容
已知点P是抛物线y2=4x上一点,设点P到此抛物线准线的距离为d1,到直线x+2y+10=0的距离为d2,则d1+d2的最小值是( )
| A、5 | ||||
| B、4 | ||||
C、
| ||||
D、
|
分析:如图点P到准线的距离等于点P到焦点F的距离,过焦点F作直线x+2y+10=0的垂线,此时d1+d2最小,根据抛物线方程求得F,进而利用点到直线的距离公式求得d1+d2的最小值.
解答:
解:如图点P到准线的距离等于点P到焦点F的距离,
过焦点F作直线x+2y+10=0的垂线,此时d1+d2最小,
∵F(1,0),则d1+d2=
=
,
故选C.
过焦点F作直线x+2y+10=0的垂线,此时d1+d2最小,
∵F(1,0),则d1+d2=
| |1+10| | ||
|
11
| ||
| 5 |
故选C.
点评:本题主要考查了抛物线的简单性质,两点距离公式的应用.解此类题设宜先画出图象,进而利用数形结合的思想解决问题.
练习册系列答案
相关题目
已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点A(
,4),则|PA|+|PM|的最小值是( )
| 7 |
| 2 |
| A、5 | ||
B、
| ||
| C、4 | ||
| D、AD |