题目内容
设数列{an}的前n项的和Sn=
a n-
×2n+1+
,n=1,2,3…
(Ⅰ)求首项a1与通项an;
(Ⅱ)设Tn=
,n=1,2,3…,证明:
Ti<
.
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
(Ⅰ)求首项a1与通项an;
(Ⅱ)设Tn=
| 2n |
| Sn |
| n |
| i=1 |
| 3 |
| 2 |
分析:(I)利用递推关系和等比数列的定义及其通项公式即可得出;
(II)利用“裂项求和”即可得出.
(II)利用“裂项求和”即可得出.
解答:解:(Ⅰ)a1=S1=
a1-
×22+
,解得a1=2.
an+1=Sn+1-Sn=
an+1-
an-
(2n+2-2n+1),
得an+1+2n+1=4(an+2n),
所以数列{an+2n}是公比为4的等比数列
∴an+2n=(a1+2)×4n-1
∴an=4n-2n (其中n为正整数)
(II)Sn=
an-
×2n+1+
=
(4n-2n)-
2n+1+
=
(2n+1-1)(2n-1),
Tn=
=
×
=
(
-
),
∴
Ti=
×(
-
)<
.
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
an+1=Sn+1-Sn=
| 4 |
| 3 |
| 4 |
| 3 |
| 1 |
| 3 |
得an+1+2n+1=4(an+2n),
所以数列{an+2n}是公比为4的等比数列
∴an+2n=(a1+2)×4n-1
∴an=4n-2n (其中n为正整数)
(II)Sn=
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
=
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
=
| 2 |
| 3 |
Tn=
| 2n |
| Sn |
| 3 |
| 2 |
| 2n |
| (2n+1-1)(2n-1) |
=
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
∴
| n |
| i=1 |
| 3 |
| 2 |
| 1 |
| 21-1 |
| 1 |
| 2n+1-1 |
| 3 |
| 2 |
点评:熟练掌握数列的递推关系、等比数列的定义及其通项公式、“裂项求和”等是解题的关键.
练习册系列答案
相关题目