题目内容
(2013•静安区一模)数列{an}的前n项和为Sn=2n2(n∈N*),对任意正整数n,数列{bn}的项都满足等式an+12-2anan+1bn+an2=0,则bn=
.
| 4n2+1 |
| 4n2-1 |
| 4n2+1 |
| 4n2-1 |
分析:根据数列{an}的前n项和Sn,表示出数列{an}的前n-1项和Sn-1,两式相减即可求出此数列的通项公式,然后把n=1代入也满足,故此数列为等差数列,求出的an即为通项公式,即可求出bn即为通项公式.
解答:解:当n=1时,S1=2×12=2,
当n≥2时,an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
又n=1时,a1=2,满足通项公式,
∴此数列为等差数列,其通项公式为an=4n-2,
又数列{bn}的项都满足等式an+12-2anan+1bn+an2=0,
则bn=
=
,
即bn=
.
故答案为:
.
当n≥2时,an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
又n=1时,a1=2,满足通项公式,
∴此数列为等差数列,其通项公式为an=4n-2,
又数列{bn}的项都满足等式an+12-2anan+1bn+an2=0,
则bn=
an2+
| ||
| 2anan+1 |
| (4n-2)2+(4n+2)2 |
| 2(4n-2)(4n+2) |
即bn=
| 4n2+1 |
| 4n2-1 |
故答案为:
| 4n2+1 |
| 4n2-1 |
点评:此题考查了等差数列的通项公式,灵活运用an=Sn-Sn-1求出数列的通项公式是解本题的关键.
练习册系列答案
相关题目