题目内容

【题目】甲、乙两位小学生各有2008年奥运吉祥物“福娃”5个(其中“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮各一个”),现以投掷一个骰子的方式进行游戏,规则如下:当出现向上的点数是奇数时,甲赢得乙一个福娃;否则乙赢得甲一个福娃,规定掷骰子的次数达9次时,或在此前某人已赢得所有福娃时游戏终止.记游戏终止时投掷骰子的次数为ξ
(1)求掷骰子的次数为7的概率;
(2)求ξ的分布列及数学期望Eξ.

【答案】
(1)解:当ξ=7时,若甲赢意味着“第七次甲赢,前6次赢5次,

但根据规则,前5次中必输1次”,由规则,每次甲赢或乙赢的概率均为

因此P(ξ=7)=


(2)解:设游戏终止时骰子向上的点数是奇数出现的次数为m,

向上的点数是偶数出现的次数为n,

则由 ,可得:

当m=5,n=0或m=0,n=5时,ξ=5;

当m=6n=1或m=1,n=6时,ξ=7

当m=7,n=2或m=2,n=7时,ξ=9.

因此ξ的可能取值是5、7、9

每次投掷甲赢得乙一个福娃与乙赢得甲一个福娃的可能性相同,其概率都是

所以ξ的分布列是:


【解析】对于(1)求掷骰子的次数为7的概率.首先可以分析得到甲赢或乙赢的概率均为 ,若第7次甲赢意味着“第七次甲赢,前6次赢5次,但根据规则,前5次中必输1次”.若乙赢同样.故可根据二项分布列出式子求解即可.
对于(2)求ξ的分布列及数学期望Eξ.故可以设奇数出现的次数为m,偶数出现的次数为n.然后根据题意列出关系式,求出可能的m n的值又ξ=m+n,求出ξ的可能取值,然后分别求出概率即可得到ξ的分布列,再根据期望公式求得Eξ即可.
【考点精析】关于本题考查的离散型随机变量及其分布列,需要了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网