题目内容
已知函数f(x)=2sinωxcosωx-2
sin2ωx+
(ω>0),的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)的单调增区间;
(3)若f(α)=
,求cos(4α+
π)的值.
| 3 |
| 3 |
(1)求ω的值;
(2)求函数f(x)的单调增区间;
(3)若f(α)=
| 2 |
| 3 |
| 2 |
| 3 |
(1)因为f(x)=2sinωxcosωx-2
sin2ωx+
=sin2ωx+
cos2ωx
=2sin(2ωx+
).
∵函数的周期是π,所以
=π,
解得ω=1;
(2)由(1)可知f(x)=2sin(2x+
).
由2kπ-
≤2x+
≤2kπ+
(k∈Z),
解得kπ-
≤x≤kπ+
(k∈Z).
所以函数f(x)的单调增区间为[kπ-
,kπ+
](k∈Z).
(3)由(1)可知f(x)=2sin(2x+
).
f(α)=
,所以
=2sin(2x+
).
∴sin(2x+
)=
.
∴cos(4α+
π)=2sin2(2x+
)-1=2×(
)2-1=-
.
| 3 |
| 3 |
=sin2ωx+
| 3 |
=2sin(2ωx+
| π |
| 3 |
∵函数的周期是π,所以
| 2π |
| 2ω |
解得ω=1;
(2)由(1)可知f(x)=2sin(2x+
| π |
| 3 |
由2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
解得kπ-
| 5π |
| 12 |
| π |
| 12 |
所以函数f(x)的单调增区间为[kπ-
| 5π |
| 12 |
| π |
| 12 |
(3)由(1)可知f(x)=2sin(2x+
| π |
| 3 |
f(α)=
| 2 |
| 3 |
| 2 |
| 3 |
| π |
| 3 |
∴sin(2x+
| π |
| 3 |
| 1 |
| 3 |
∴cos(4α+
| 2 |
| 3 |
| π |
| 3 |
| 1 |
| 3 |
| 7 |
| 9 |
练习册系列答案
相关题目