题目内容

已知函数f(x)=2sinωxcosωx-2
3
sin2ωx+
3
(ω>0)
,的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)的单调增区间;
(3)若f(α)=
2
3
,求cos(4α+
2
3
π)
的值.
(1)因为f(x)=2sinωxcosωx-2
3
sin2ωx+
3

=sin2ωx+
3
cos2ωx
=2sin(2ωx+
π
3
).
∵函数的周期是π,所以

解得ω=1;
(2)由(1)可知f(x)=2sin(2x+
π
3
).
由2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
(k∈Z),
解得kπ-
12
≤x≤kπ+
π
12
(k∈Z).
所以函数f(x)的单调增区间为[kπ-
12
,kπ+
π
12
](k∈Z).
(3)由(1)可知f(x)=2sin(2x+
π
3
).
f(α)=
2
3
,所以
2
3
=2sin(2x+
π
3
).
∴sin(2x+
π
3
)=
1
3

cos(4α+
2
3
π)
=2sin2(2x+
π
3
)-1=2×(
1
3
)2-1
=-
7
9
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网