题目内容

已知函数f (x)=
x+1
x-2
的定义域集合是A,函数g(x)=lg[x2-(2a+1)x+a2+a]的定义域集合是B.
(1)求集合A,B.
(2)若A∪B=B,求实数a的取值范围.
(1)由题意
x+1
x-2
≥0
所以 A={x|x≤-1或x>2};
x2-(2a+1)x+a2+a>0 B={x|x<a或x>a+1};
(2)由A∪B=B得A⊆B,
因此
a>-1
a+1≤2

解得:-1<a≤1,
∴实数a的取值范围是(-1,1].
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网