题目内容
(2009江苏卷)(本小题满分16分)
按照某学者的理论,假设一个人生产某产品单件成本为
元,如果他卖出该产品的单价为
元,则他的满意度为
;如果他买进该产品的单价为
元,则他的满意度为
.如果一个人对两种交易(卖出或买进)的满意度分别为
和
,则他对这两种交易的综合满意度为
.
现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为
元和
元,甲买进A与卖出B的综合满意度为
,乙卖出A与买进B的综合满意度为![]()
(1)求
和
关于
、
的表达式;当
时,求证:
=
;
(2)设
,当
、
分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?
(3)记(2)中最大的综合满意度为
,试问能否适当选取
、
的值,使得
和
同时成立,但等号不同时成立?试说明理由。
解析:本小题主要考查函数的概念、基本不等式等基础知识,考查数学建模能力、抽象概括能力以及数学阅读能力。满分16分。
(1) ![]()
当
时,
,
,
=![]()
(2)当
时,
![]()
由
,
故当
即
时,
甲乙两人同时取到最大的综合满意度为
。
(3)(方法一)由(2)知:
=![]()
由
得:
,
令
则
,即:
。
同理,由
得:![]()
另一方面,![]()
![]()
当且仅当
,即
=
时,取等号。
所以不能否适当选取
、
的值,使得
和
同时成立,但等号不同时成立。
![]()
练习册系列答案
相关题目
(2009江苏卷)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:
学生 | 1号 | 2号 | 3号 | 4号 | 5号 |
甲班 | 6 | 7 | 7 | 8 | 7 |
乙班 | 6 | 7 | 6 | 7 | 9 |
则以上两组数据的方差中较小的一个为
= .