题目内容
【题目】已知
汽车站每天上午
,
之间都恰有一辆长途汽车经过,但是长途车到站的时间是随机的,且每辆车的到站时间是相互独立的,汽车到站后即停即走,据统计汽车到站规律为:
![]()
现有一位旅客在
到达
汽车站,问:
(1)该旅客候车时间不超过20分钟的概率;
(2)记该旅客的候车时间为
,求
的概率分布列及数学期望.
【答案】(1)见解析;(2)![]()
【解析】分析:(1)利用概率的加法公式,即可求解旅客候车时间不超过
分钟为事件
;
(2)求得
可取值为
,求得取每个值的概率,列出分布列,利用公式求解数学期望.
详解:(1)记旅客8:30—9:00时间段上车为事件
,旅客9:00--9:30时间段上车为事件
,该旅客候车时间不超过20分钟为事件
,则![]()
(2)
可取值为
;
;
;![]()
;
所以
的分布列是
| 5 |
|
|
|
|
|
|
|
|
因此
的数学期望是
钟.
【题目】“微信运动”已经成为当下热门的健身方式,韩梅梅的微信朋友圈内有800为好友参与了“微信运动”.他随机抽取了50为微信好友(男、女各25人),统计其在某一天的走路步数.其中女性好友的走路步数数据记录如下:
12860 8320 10231 6734 7323 8430 3200 4543 11123 9860
8753 6454 7292 4850 10222 9734 7944 9117 6421 2980
1123 1786 2436 3876 4326
男性好友走路步数情况可以分为五个类别
(0-2000步)(说明:“0-2000”表示大于等于0,小于等于2000,下同),
(2001-5000)、
(5001-8000)、
(8001-10000步)、
(10001步及以上),且
三中类型的人数比例为
,将统计结果绘制如图所示的柱形图.
![]()
若某人一天的走路步数超过8000步则被系统评定为“积极型”,否则被系统评定为“懈怠型”.
(1)若以韩梅梅抽取的好友当天行走步数的频率分布来估计所有微信好友每日走路步数的概率分布,请估计韩梅梅的微信好友圈里参与“微信运动”的800名好友中,每天走路步数在5001-10000步的人数;
(2)请根据选取的样本数据完成下面的
列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
积极型 | 懈怠型 | 总计 | |
男 | 25 | ||
女 | 25 | ||
总计 | 30 |
(3)若从韩梅梅当天选取的步数大于10000的好友中按男女比例分层选取5人进行身体状况调查,然后再从这5位好友中选取2人进行访谈,求至少有一位女性好友访谈的概率.
参考公式:
,其中
.
临界值表:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占
,而男生有10人表示对冰球运动没有兴趣额.
(1)完成
列联表,并回答能否有
的把握认为“对冰球是否有兴趣与性别有关”?
有兴趣 | 没兴趣 | 合计 | |
男 | 55 | ||
女 | |||
合计 |
(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为
,若每次抽取的结果是相互独立的,求
的分布列,期望和方差.
附表:
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
![]()