题目内容

精英家教网如图,已知正方体ABCD-A1B1C1D1的棱长为a(a>2),长度为2的线段MN的一个端点M在DD1上运动,另一端点N在底面ABCD上运动,则MN的中点P的轨迹(曲面)与共一顶点D的三个面所围成的几何体的体积为
 
分析:根据题意,连接N点与D点,得到一个直角三角形△NMD,P为斜边MN的中点,所以|PD|的长度不变,进而得到点P的轨迹是球面的一部分,求出球的半径,代入球的体积公式计算.
解答:精英家教网解:如图可得,端点N在正方形ABCD内运动,连接N点与D点,
由ND,DM,MN构成一个直角三角形,
设P为MN的中点,根据直角三角形斜边上的中线长度为斜边的一半可得
不论△MDN如何变化,P点到D点的距离始终等于1.
故P点的轨迹是一个以D为中心,半径为1的球的
1
8

其体积V=
1
8
×
4
3
×π×13=
π
6

故答案是
π
6
点评:解题的关键是,根据P点满足的条件,判断几何体为球体的
1
8
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网