题目内容
已知数列{an}满足a1=1,且an=3an-1+2n-1(n∈N*且n≥2),
(1)证明数列{an+2n}是等比数列;
(2)求数列{an}的前n项和Sn.
(1)证明数列{an+2n}是等比数列;
(2)求数列{an}的前n项和Sn.
分析:(1)利用待定系数法,可得an+2n=3(an-1+2n-1),从而可知{an+2n}是以a1+21即为首项,以3为公比的等比数列;
(2)求出数列的通项,再分组求和,即可求得数列{an}的前n项和Sn.
(2)求出数列的通项,再分组求和,即可求得数列{an}的前n项和Sn.
解答:解:(1)设an+A•2n=3(an-1+A•2n-1),整理得an=3an-1+A•2n-1,
对比an=3an-1+2n-1,得A=1.
∴an+2n=3(an-1+2n-1),
∴{an+2n}是以a1+21即为首项,以3为公比的等比数列,
(2)由(1)知an+2n=3•3n-1=3n,
∴an=3n-2n,n∈N*,
∴Sn=(31-21)+(32-22)+(33-23)+ …+(3n-2n)=(31+32+33+…+3n)-(21+22+23+…+2n)=
-
=
-2n+1+
.
对比an=3an-1+2n-1,得A=1.
∴an+2n=3(an-1+2n-1),
∴{an+2n}是以a1+21即为首项,以3为公比的等比数列,
(2)由(1)知an+2n=3•3n-1=3n,
∴an=3n-2n,n∈N*,
∴Sn=(31-21)+(32-22)+(33-23)+ …+(3n-2n)=(31+32+33+…+3n)-(21+22+23+…+2n)=
| 3(1-3n) |
| 1-3 |
| 2(1-2n) |
| 1-2 |
| 3n+1 |
| 2 |
| 1 |
| 2 |
点评:本题考查构造法证明等比数列,考查数列的求和,解题的关键是构造新数列,证明等比数列,掌握数列求和的方法.
练习册系列答案
相关题目