题目内容
设定义域都为[
,8]的两个函数f(x)和g(x)的解析式分别为f(x)=log2
和g(x)=log4
,
(1)求函数F(x)=f(x)+g(x)的值域;
(2)求函数G(x)=f(x)•g(x)的值域.
| 2 |
| x |
| 4 |
| x |
| 2 |
(1)求函数F(x)=f(x)+g(x)的值域;
(2)求函数G(x)=f(x)•g(x)的值域.
(1)由已知及对数的运算性质可得,F(x)=f(x)+g(x)=log2
+log4
=log2x-log24+log4x-log42
=log2x-2+
log2x-
=
log2x-
,x∈[
,8],-----(2分)
因为
≤x≤8,且log2x的值随着x的增大而增大,----------(3分)
所以log2
≤log2x≤log28,即
≤log2x≤3,--------(4分)
故-
≤
log2x-
≤2,即-
≤F(x)≤2---------------(5分)
所以函数F(x)的值域为[-
,2]---------------------(6分)
(2)由已知及对数的运算性质可得,G(x)=f(x)•g(x)=log2
•log4
=(log2x-2)•(
log2x-
)
=
(log2x)2-
log3x+1,x∈[
,8],--------(8分)
令t=log2x,x∈[
,8],则有
≤t≤3,
于是有函数y=
t2-
t+1,t∈[
,3],
所以ymin=
=-
,ymax=max{
×(
)2-
×
+1,
×32-
×3+1}=max{
,1}=1--------(11分)
因此-
≤y≤1,即-
≤G(x)≤1,
所以函数G(x)的值域为[-
,1].-----------(12分)
| x |
| 4 |
| x |
| 2 |
=log2x-2+
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 5 |
| 2 |
| 2 |
因为
| 2 |
所以log2
| 2 |
| 1 |
| 2 |
故-
| 7 |
| 4 |
| 3 |
| 2 |
| 5 |
| 2 |
| 7 |
| 4 |
所以函数F(x)的值域为[-
| 7 |
| 4 |
(2)由已知及对数的运算性质可得,G(x)=f(x)•g(x)=log2
| x |
| 4 |
| x |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
令t=log2x,x∈[
| 2 |
| 1 |
| 2 |
于是有函数y=
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
所以ymin=
4×
| ||||
4×
|
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
| 8 |
因此-
| 1 |
| 8 |
| 1 |
| 8 |
所以函数G(x)的值域为[-
| 1 |
| 8 |
练习册系列答案
相关题目