题目内容
在斜三棱柱ABC-A1B1C1中,A0,B0,分别为侧棱AA1,BB1上的点,且知BB0:B0B1=3:2,过A0,B0,C1的截面将三棱柱分成上下两个部分体积之比为2:1,则AA0:A0A1=( )

| A.2:3 | B.4:3 | C.3:2 | D.1:1 |
上下二部分体积高相等,体积之比为为两个四边形面积之比,
设二梯形高为h1,
=
=
,
AAO+BBO=AOA1+BOB1,设侧棱长为a,
=k,AA1=a,AAO=ak,AOA1=a(1-k),
BBO=
,BOB1=
,
=a(1-k)-ak,k=
,
=
,
=
.
故选A.
设二梯形高为h1,
| V上 |
| V下 |
| S四边形ABBOAO |
| S四边形BOB1A1AO |
| (AAO+BBO)h1 |
| 2 |
AAO+BBO=AOA1+BOB1,设侧棱长为a,
| AAO |
| AA1 |
BBO=
| 3a |
| 5 |
| 2a |
| 5 |
| a |
| 5 |
| 2 |
| 5 |
| AAO |
| AA1 |
| 2 |
| 5 |
| AAO |
| AOA1 |
| 2 |
| 3 |
故选A.
练习册系列答案
相关题目