题目内容
用定义法证明f(x)=x3+x+1在R上是单调递增.
分析:设x1<x2,利用单调递增的定义f(x1)-f(x2)<0即可.
解答:解:设x1<x2,
则f(x1)-f(x2)=
+x1+1-(
+x2+1)
=
-
+x1-x2
=(x1-x2)(
+x1x2+
)+(x1-x2)
=(x1-x2)(
+x1x2+
+1)
=(x1-x2)[(x1+
x2)2+
+1].
∵x1<x2,∴x1-x2<0.
∴f(x1)<f(x2).
∴f(x)=x3+x+1在R上是单调递增.
则f(x1)-f(x2)=
| x | 3 1 |
| x | 3 2 |
=
| x | 3 1 |
| x | 3 2 |
=(x1-x2)(
| x | 2 1 |
| x | 2 2 |
=(x1-x2)(
| x | 2 1 |
| x | 2 2 |
=(x1-x2)[(x1+
| 1 |
| 2 |
| 3 |
| 4 |
| x | 2 2 |
∵x1<x2,∴x1-x2<0.
∴f(x1)<f(x2).
∴f(x)=x3+x+1在R上是单调递增.
点评:本题考查了单调递增函数的定义,属于基础题.
练习册系列答案
相关题目