题目内容

已知集合M={f(x)|f(x)+f(x+2)=f(x+1),x∈R},g(x)=sin
πx
3

(1)判断g(x)与M的关系,并说明理由;
(2)M中的元素是否都是周期函数,证明你的结论;
(3)M中的元素是否都是奇函数,证明你的结论.
(1)∵g(x)+g(x+2)=sin
πx
3
+sin(
πx
3
+
3
)=2sin
π
3
(x+1)cos
π
3

=sin
π
3
(x+1)=g(x+1)
∴g(x)∈M…(6分)
(2)因g(x)是周期为6的周期函数,猜测f(x)也是周期为6的周期函数
由f(x)+f(x+2)=f(x+1),得f(x+1)+f(x+3)=f(x+2),
∴f(x)+f(x+2)+f(x+1)+f(x+3)=f(x+1)+f(x+2)
∴f(x)+f(x+3)=0,∴f(x+3)=-f(x),
∴f(x+6)=-f(x+3)=f(x),得证f(x)是周期为6的周期函数,
故M中的元素都是周期为6的周期函数.…(12分)
(3)令h(x)=cos
πx
3
,可证得h(x)+h(x+2)=h(x+1)…(16分)
∴h(x)∈M,但h(x)是偶函数,不是奇函数,
∴M中的元素不都是奇函数.…(18分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网